Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

A new chromate of tetravalent cerium: $\mathbf{C e}_{2}\left(\mathrm{CrO}_{4}\right)_{4} \cdot \mathbf{2 H} \mathbf{2}$

Uwe Kolitsch* and Karolina Schwendtner

Universität Wien, Institut für Mineralogie und Kristallographie, Geozentrum, Althanstrasse 14, A-1090 Wien, Austria
Correspondence e-mail: uwe.kolitsch@univie.ac.at

Received 14 June 2004
Accepted 14 July 2004
Online 11 August 2004
Dicerium(IV) tetrachromate(VI) dihydrate, $\mathrm{Ce}_{2}^{\mathrm{IV}}\left(\mathrm{CrO}_{4}\right)_{4} \cdot-$ $2 \mathrm{H}_{2} \mathrm{O}$, has been prepared from an acidic aqueous solution at room temperature. Its novel crystal structure, which was solved from single-crystal X-ray diffraction data, is built from isolated CrO_{4} tetrahedra and isolated $\mathrm{Ce}\left(\mathrm{O}, \mathrm{H}_{2} \mathrm{O}\right)_{n}(n=8$ and 9) polyhedra. All atoms are in general positions. The mean $\mathrm{Ce}-\mathrm{O}$ and $\mathrm{Cr}-\mathrm{O}$ bond lengths are 2.358 and $1.651 \AA$, respectively. Comparisons are drawn with the structure of $\mathrm{Ce}^{\mathrm{IV}}\left(\mathrm{CrO}_{4}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$.

Comment

$\mathrm{Ce}_{2}^{\mathrm{IV}}\left(\mathrm{CrO}_{4}\right)_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, dicerium(IV) tetrachromate(VI) dihydrate, (I), represents a new structure type among chromates (and sulfates or molybdates) of comparable M^{IV} cations ($M=$ $\mathrm{Ce}, \mathrm{Th}, \mathrm{U}, \mathrm{Zr}$ and Ti$)$. The atomic arrangement has spacegroup symmetry $P b c a$, and the asymmetric unit contains two Ce , four $\mathrm{Cr}, 18 \mathrm{O}$ and four H atoms, all of which occupy general positions. The structure is built from isolated CrO_{4} tetrahedra, Ce atoms and two water molecules, which belong to the coordination environments of the Ce atoms (Figs. 1 and 2). The mean $\mathrm{Cr}-\mathrm{O}$ bond lengths in the four CrO_{4} tetrahedra are similar (1.658, 1.648, 1.650 and $1.646 \AA$ for atoms $\mathrm{Cr} 1, \mathrm{Cr} 2, \mathrm{Cr} 3$ and Cr 4 , respectively). The $\mathrm{Cr} 1 \mathrm{O}_{4}$ tetrahedron shows the largest bond-length distortion (Table 1) and, accordingly, the largest mean $\mathrm{Cr}-\mathrm{O}$ bond length, an observation in strict accordance with the distortion theorem (Brown \& Shannon, 1973; Brown, 1981). The observed distortion of the $\mathrm{Cr}^{1} \mathrm{O}_{4}$ tetrahedron (with an unusually short $\mathrm{Cr} 1-\mathrm{O} 1$ distance and a long $\mathrm{Cr} 1-\mathrm{O} 4$ bond) is due to the fact that atom O 1 is bonded only to one metal atom (Cr 1), whereas atoms $\mathrm{O} 2, \mathrm{O} 3$ and O 4 are each bonded to atom Cr 1 and one of the two Ce atoms; atom O 4 has a very short bond to Ce 1 and therefore needs a relatively long bond to Cr 1 in order to satisfy its bond-valence requirements. The four mean $\mathrm{Cr}-\mathrm{O}$ bond lengths are all larger than the corresponding average $(1.642 \AA)$ in the single CrO_{4} tetrahedron present in the more highly hydrated cerium(IV) chromate $\mathrm{Ce}^{\mathrm{IV}}\left(\mathrm{CrO}_{4}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (monoclinic, $P 2_{1} / m$; Lindgren, 1977). The geometry of the
CrO_{4} tetrahedra in (I) is regular; the maximum deviation from an ideal tetrahedral $\mathrm{O}-\mathrm{Cr}-\mathrm{O}$ angle is 1.81°.

The two Ce atoms are, as seen in a view along [001] (Fig. 1a), located in undulating layers roughly parallel to (100). Interestingly, in monoclinic $\mathrm{Ce}^{\mathrm{IV}}\left(\mathrm{CrO}_{4}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, the Ce atoms are also located in (slightly less) undulating layers parallel to (100). In (I), atom Ce1 is coordinated to eight oxygen ligands (one of which is a water molecule, $\mathrm{O} W 18$), while atom Ce 2 has a coordination sphere consisting of nine O atoms (again one of these is a water molecule, $\mathrm{O} W 17$). The two $\mathrm{Ce}\left(\mathrm{O}, \mathrm{H}_{2} \mathrm{O}\right)$ coordination polyhedra do not share any faces, edges or corners. The polyhedra can be described as a distorted bicapped trigonal prism, where two faces of the prism are capped (Ce1), and a distorted monocapped square antiprism, where one of the basal planes is capped (Ce 2). The single Ce atom in $\mathrm{Ce}^{\mathrm{IV}}\left(\mathrm{CrO}_{4}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ is eight-coordinate and the isolated $\mathrm{Ce}\left(\mathrm{O}, \mathrm{H}_{2} \mathrm{O}\right)_{8}$ coordination polyhedron is similar to that of atom Ce 1 in the title compound. The mean $\mathrm{Ce} 1-\mathrm{O}$ and $\mathrm{Ce} 2-$ O bond lengths in (I) are 2.337 and $2.379 \AA$, respectively. In $\mathrm{Ce}^{\mathrm{IV}}\left(\mathrm{CrO}_{4}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, the corresponding value is very similar (2.342 £).

The $\mathrm{O}-\mathrm{H}$ vectors of the two water molecules in (I) point towards small voids in the structure. The hydrogen bonds are

(a)

Figure 1

(b)

A view of (I) along (a) [001] (shown with CrO_{4} tetrahedra, Ce atoms and water molecules) and (b) [010] [shown with CrO_{4} tetrahedra and $\mathrm{Ce}\left(\mathrm{O}, \mathrm{H}_{2} \mathrm{O}\right)_{n} \quad(n=8$ and 9$)$ polyhedra]. Note the (100) layered arrangement of the Ce atoms in (a).

Figure 2

A view of the atoms in the asymmetric unit of (I), with displacement ellipsoids at the 50% probability level. H atoms are shown as small spheres of arbitrary radii.
all more or less weak (Table 2), and the bonds donated by atoms H 1 and H 3 appear to be bifurcated (note that atom H 4 has no acceptor). The H atoms in $\mathrm{Ce}^{\mathrm{IV}}\left(\mathrm{CrO}_{4}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ could not be located by Lindgren (1977), but the distances between the two non-equivalent OW atoms and probable O acceptor atoms suggest that the hydrogen bonds are also weak in $\mathrm{Ce}^{\mathrm{IV}}\left(\mathrm{CrO}_{4}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{O} \cdots \mathrm{O}>2.75 \AA)$.

Bond-valence sums for the metal atoms in (I) were calculated using the bond-valence parameters from Brese \& O'Keeffe (1991) for $\mathrm{Cr}-\mathrm{O}$ bonds and the parameters from Roulhac \& Palenik (2003) for $\mathrm{Ce}^{\text {IV }}-\mathrm{O}$ bonds. These sums are $4.00(\mathrm{Ce} 1), 3.94(\mathrm{Ce} 2), 5.84(\mathrm{Cr} 1), 5.95(\mathrm{Cr} 2), 5.91(\mathrm{Cr} 3)$ and 5.98 (Cr4) valence units (v.u.), and are thus all reasonably close to ideal valences. It is noted that the use of bond-valence parameters from Brese \& O'Keeffe (1991) for Ce ${ }^{\text {IV }}-\mathrm{O}$ bonds would result in considerably underestimated sums for the Ce atoms (3.59 v.u. for Ce 1 and $3.54 \mathrm{v.u}$. for Ce 2). Even the improved parameters of Brown (1996; updated values, $R_{0}=$ 2.09 and $b=0.37$; http://www.ccp14.ac.uk/ccp/web-mirrors/ i_d_brown) would give unsatisfactory (overestimated) values, viz. 4.24 v.u. for Ce 1 and 4.18 v.u. for Ce 2 .

Experimental

Clusters of small dark-red bipyramidal crystals of the title compound formed at room temperature on slow evaporation of an acidic aqueous solution of $\mathrm{Ce}^{\mathrm{III}} \mathrm{Cl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Cr}^{\mathrm{VI}} \mathrm{O}_{3}(\mathrm{pH}=1-2)$. The reaction must have involved the oxidation of $\mathrm{Ce}^{\mathrm{III}}$ to $\mathrm{Ce}^{\mathrm{IV}}$. The compound is stable in air.

Crystal data

$\mathrm{Ce}_{2}\left(\mathrm{CrO}_{4}\right)_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=780.27$
Orthorhombic, Pbca
$a=10.938$ (2) \AA
$b=11.464$ (2) \AA
$c=22.038$ (4) \AA
$V=2763.4(9) \AA^{3}$
$Z=8$
$D_{x}=3.751 \mathrm{Mg} \mathrm{m}^{-3}$
Data collection
Nonius KappaCCD diffractometer ψ and ω scans
Absorption correction: multi-scan
(HKL SCALEPACK;
Otwinowski \& Minor, 1997)
$T_{\text {min }}=0.327, T_{\text {max }}=0.554$
9513 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.018$
$w R\left(F^{2}\right)=0.044$
$S=1.15$
5028 reflections
234 parameters
All H-atom parameters refined

Mo $K \alpha$ radiation
Cell parameters from 5599 reflections
$\theta=2.0-32.6^{\circ}$
$\mu=9.59 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Fragment, dark red
$0.15 \times 0.07 \times 0.07 \mathrm{~mm}$

5028 independent reflections 4611 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.011$
$\theta_{\text {max }}=32.6^{\circ}$
$h=-16 \rightarrow 16$
$k=-17 \rightarrow 17$
$l=-33 \rightarrow 33$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.019 P)^{2}\right. \\
& +4.3 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\text {max }}=0.001 \\
& \Delta \rho_{\text {max }}=0.78 \mathrm{e}^{\AA^{-3}} \\
& \Delta \rho_{\min }=-1.01 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.00037 \text { (3) }
\end{aligned}
$$

H atoms were freely refined; the $\mathrm{O}-\mathrm{H}$ distances are listed in Table 2.

Data collection: COLLECT (Nonius, 2003); cell refinement: HKL SCALEPACK (Otwinowski \& Minor, 1997); data reduction: HKL

Table 1
Selected interatomic distances (\AA).

$\mathrm{Ce} 2-\mathrm{O} 2^{\text {vi }}$	$2.4314(18)$	$\mathrm{Cr} 1-\mathrm{O} 1$	$1.5947(19)$
$\mathrm{Ce} 2-\mathrm{O} 3$	$2.3608(19)$	$\mathrm{Cr} 1-\mathrm{O} 2$	$1.6420(18)$
$\mathrm{Ce} 1-\mathrm{O} 4$	$2.1723(19)$	$\mathrm{Cr} 1-\mathrm{O} 3$	$1.6611(19)$
$\mathrm{Ce} 2-\mathrm{O} 5^{\text {vii }}$	$2.5024(18)$	$\mathrm{Cr} 1-\mathrm{O} 4$	$1.7326(18)$
$\mathrm{Ce} 2-\mathrm{O}^{\mathrm{v}}$	$2.3108(18)$	$\mathrm{Cr} 2-\mathrm{O} 5$	$1.6251(19)$
$\mathrm{Ce} 2-\mathrm{O} 7$	$2.3645(17)$	$\mathrm{Cr} 2-\mathrm{O} 6$	$1.6346(18)$
$\mathrm{Ce} 1-\mathrm{O} 8$	$2.2557(18)$	$\mathrm{Cr} 2-\mathrm{O} 7$	$1.6621(18)$
$\mathrm{Ce} 1-\mathrm{O} 9^{\text {iv }}$	$2.3847(18)$	$\mathrm{Cr} 2-\mathrm{O} 8$	$1.6696(18)$
$\mathrm{Ce} 2-\mathrm{O} 10$	$2.3373(18)$	$\mathrm{Cr} 3-\mathrm{O} 9$	$1.6316(18)$
$\mathrm{Ce} 1-\mathrm{O} 11^{\text {ii }}$	$2.3762(18)$	$\mathrm{Cr} 3-\mathrm{O} 10$	$1.6505(18)$
$\mathrm{Ce} 2-\mathrm{O} 12^{\mathrm{v}}$	$2.2793(18)$	$\mathrm{Cr} 3-\mathrm{O} 11$	$1.6541(18)$
$\mathrm{Ce} 2-\mathrm{O} 13^{\text {iv }}$	$2.4210(18)$	$\mathrm{Cr} 3-\mathrm{O} 12$	$1.6624(18)$
$\mathrm{Ce} 1-\mathrm{O} 14^{\text {iii }}$	$2.382(2)$	$\mathrm{Cr} 4-\mathrm{O} 13$	$1.6301(18)$
$\mathrm{Ce} 1-\mathrm{O} 15^{\mathrm{i}}$	$2.2625(19)$	$\mathrm{Cr} 4-\mathrm{O} 14$	$1.6458(19)$
$\mathrm{Ce} 1-\mathrm{O} 16$	$2.3670(18)$	$\mathrm{Cr} 4-\mathrm{O} 15$	$1.6514(19)$
$\mathrm{Ce} 2-\mathrm{O} W 17$	$2.4048(19)$	$\mathrm{Cr} 4-\mathrm{O} 16$	$1.6548(18)$
$\mathrm{Ce} 1-\mathrm{O} 1818$	$2.493(2)$		

Symmetry codes: (i) $x-\frac{1}{2}, \frac{1}{2}-y,-z$; (ii) $x, \frac{1}{2}-y, z-\frac{1}{2}$; (iii) $\frac{1}{2}-x, y-\frac{1}{2}, z$; (iv)
$x-\frac{1}{2}, y, \frac{1}{2}-z ;$ (v) $\frac{1}{2}-x, \frac{1}{2}+y, z ;$ (vi) $\frac{1}{2}+x, y, \frac{1}{2}-z ;$ (vii) $-x, \frac{1}{2}+y, \frac{1}{2}-z$.
Table 2
Hydrogen-bonding geometry ($\AA{ }^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
OW17-H1 . . O16	0.72 (5)	2.26 (5)	2.931 (3)	155 (5)
OW17-H1 . . 08	0.72 (5)	2.42 (5)	2.943 (3)	130 (5)
$\mathrm{O} W 17-\mathrm{H} 2 \cdots \mathrm{O}^{\text {vi }}$	0.66 (4)	2.10 (4)	2.752 (3)	168 (5)
$\mathrm{O} W 18-\mathrm{H} 3 \cdots \mathrm{O} 4^{\text {iii }}$	0.67 (8)	2.49 (8)	3.095 (3)	151 (8)
$\mathrm{OW} 18-\mathrm{H} 3 \cdots \mathrm{O} 11^{\text {viii }}$	0.67 (8)	2.62 (7)	3.185 (3)	143 (8)

DENZO (Otwinowski \& Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg \& Berndt, 1999); ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Financial support by the Austrian Science Foundation (FWF) (grant No. P15220-N06) and the International Centre for Diffraction Data (grant No. 90-03 ET) are gratefully acknowledged.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BC1054). Services for accessing these data are described at the back of the journal.

References

Brandenburg, K. \& Berndt, M. (1999). DIAMOND. Version 2.1b. Crystal Impact GbR, Bonn, Germany.
Brese, N. E. \& O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.
Brown, I. D. (1981). Structure and Bonding in Crystals, Vol. II, edited by M. O'Keeffe \& A. Navrotsky, pp. 1-30. New York: Academic Press.
Brown, I. D. (1996). J. Appl. Cryst. 29, 479-480.
Brown, I. D. \& Shannon, R. D. (1973). Acta Cryst. A29, 266-282.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Lindgren, O. (1977). Acta Chem. Scand. Ser. A, 31, 167-170.
Nonius (2003). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Roulhac, P. L. \& Palenik, G. J. (2003). Inorg. Chem. 42, 118-121.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

